z-logo
open-access-imgOpen Access
Spatial-temporal variation and impacts of drought in Xinjiang (Northwest China) during 1961–2015
Author(s) -
Junqiang Yao,
Yong Zhao,
Xiaojing Yu
Publication year - 2018
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.4926
Subject(s) - evapotranspiration , precipitation , environmental science , normalized difference vegetation index , arid , aridity index , surface runoff , climatology , climate change , china , physical geography , vegetation (pathology) , global warming , atmospheric sciences , geography , meteorology , ecology , geology , medicine , archaeology , pathology , biology
Observations indicate that temperature and precipitation patterns changed dramatically in Xinjiang, northwestern China, between 1961 and 2015. Dramatic changes in climatic conditions can bring about adverse effects. Specifically, meteorological drought severity based on the standardized precipitation index (SPI) and the standardized precipitation evapotranspiration index (SPEI) showed a decreasing trend in Xinjiang prior to 1997, after which the trend reversed. SPEI-based drought severity shows a much stronger change during 1997–2015 than the SPI, which is independent of the effect of evaporative demand. Meteorological drought severity has been aggravated by a significant rise in temperature (1.1 °C) over the last two decades that has not been accompanied by a corresponding increase in precipitation. As a result, the evaporative demand in Xinjiang has risen. An examination of a large spatio-temporal extent has made the aggravated drought conditions more evident. Our results indicate that increased meteorological drought severity has had a direct effect on the normalized difference vegetation index (NDVI) and river discharge. The NDVI exhibited a significant decrease during the period 1998–2013 compared to 1982–1997, a decrease that was found to be caused by increased soil moisture loss. A positive relationship was recorded between evaporative demand and the runoff coefficients of the 68 inland river catchments in northwestern China. In the future, meteorological drought severity will likely increase in arid and semiarid regions as global warming continues.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom