z-logo
open-access-imgOpen Access
lncRNA H19 is involved in TGF-β1-induced epithelial to mesenchymal transition in bovine epithelial cells through PI3K/AKT Signaling Pathway
Author(s) -
Wei Yang,
Xuezhong Li,
Shaopei Qi,
Xueru Li,
Kun Zhou,
Suzhu Qing,
Yong Zhang,
MingQing Gao
Publication year - 2017
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.3950
Subject(s) - epithelial–mesenchymal transition , pi3k/akt/mtor pathway , cancer research , protein kinase b , transforming growth factor , biology , signal transduction , downregulation and upregulation , fibrosis , transforming growth factor beta , myofibroblast , microbiology and biotechnology , medicine , pathology , biochemistry , gene
Increased levels of long noncoding RNA H19 (H19) have been observed in many inflammatory and organ fibrosis diseases including ulcerative colitis, osteoarthritis, liver fibrosis, renal fibrosis and pulmonary fibrosis. However, the role of H19 in bovine mastitis and mastitis-caused fibrosis is still unclear. In our study, H19 was characterized as a novel regulator of EMT induced by transforming growth factor-β1 (TGF-β1) in bovine mammary alveolar cell-T (MAC-T) cell line. We found that H19 was highly expressed in bovine mastitis tissues and inflammatory MAC-T cells induced by virulence factors of pathogens. TGF-β1 was also highly expressed in inflammatory MAC-T cells, and exogenous TGF-β1 could induce EMT, enhance extracellular matrix protein expression, and upregulate H19 expression in epithelial cells. Stable expression of H19 significantly promotes EMT progression and expression of ECM protein induced by TGF-β1 in MAC-T cells. Furthermore, by using a specific inhibitor of the PI3K/AKT pathway, we demonstrated that TGF-β1 upregulated H19 expression through PI3K/AKT pathway. All these observations imply that the lncRNA H19 modulated TGF-β1-induced epithelial to mesenchymal transition in bovine epithelial cells through PI3K/AKT signaling pathway, which suggests that mammary epithelial cells might be one source for myofibroblasts in vivo in the mammary glands under an inflammatory condition, thereby contributing to mammary gland fibrosis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom