Mutation detection and prenatal diagnosis of XLHED pedigree
Author(s) -
Yao Lin,
Wei Yin,
Zhuan Bian
Publication year - 2017
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.3691
Subject(s) - frameshift mutation , hypohidrotic ectodermal dysplasia , prenatal diagnosis , genetics , gene , exon , mutation , biology , fetus , medicine , pregnancy
Background The phenotypic characters of X -linked Hypohidrotic Ectodermal Dysplasia (XLHED) are the dysplasia of epithelial- and mesenchymal-derived organs. Ectodysplasin ( EDA) is the causative gene of XLHED. Methods The current study reported a large Chinese XLHED pedigree. The genomic DNA of adult and fetus was extracted from peripheral blood and shed chorion cell respectively. The nucleotide variation in EDA gene was screened through direct sequencing the coding sequence. The methylation state of EDA gene’s promoter was evaluated by pyrosequencing. Results This Chinese XLHED family had two male patients and three carriers. All of them were with a novel EDA frameshift mutation. The mutation, c.172-173insGG, which leads to an immediate premature stop codon in exon one caused severe structural changes of EDA. Prenatal diagnosis suggested that the fetus was a female carrier. The follow-up observation of this child indicated that she had mild hypodontia of deciduous teeth at age six. The methylation level of EDA gene’s promoter was not related to carriers’ phenotype changes in this family. Discussion We reported a new frameshift mutation of EDA gene in a Chinese family. Prenatal diagnosis can help to predict the disease status of the fetus.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom