z-logo
open-access-imgOpen Access
Identifying genes and regulatory pathways associated with the scleractinian coral calcification process
Author(s) -
Eldad Gutner-Hoch,
Hiba Waldman BenAsher,
Ruth Yam,
Aldo Shemesh,
Oren Levy
Publication year - 2017
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.3590
Subject(s) - stylophora pistillata , biology , wnt signaling pathway , biomineralization , calcification , coral , gene expression , gene , microbiology and biotechnology , gene expression profiling , coral reef , transcriptome , signal transduction , genetics , ecology , medicine , paleontology
Reef building corals precipitate calcium carbonate as an exo-skeleton and provide substratum for prosperous marine life. Biomineralization of the coral’s skeleton is a developmental process that occurs concurrently with other proliferation processes that control the animal extension and growth. The development of the animal body is regulated by large gene regulatory networks, which control the expression of gene sets that progressively generate developmental patterns in the animal body. In this study we have explored the gene expression profile and signaling pathways followed by the calcification process of a basal metazoan, the Red Sea scleractinian (stony) coral, Stylophora pistillata . When treated by seawater with high calcium concentrations (addition of 100 gm/L, added as CaCl 2 .2H 2 O), the coral increases its calcification rates and associated genes were up-regulated as a result, which were then identified. Gene expression was compared between corals treated with elevated and normal calcium concentrations. Calcification rate measurements and gene expression analysis by microarray RNA transcriptional profiling at two time-points (midday and night-time) revealed several genes common within mammalian gene regulatory networks. This study indicates that core genes of the Wnt and TGF-β/BMP signaling pathways may also play roles in development, growth, and biomineralization in early-diverging organisms such as corals.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom