z-logo
open-access-imgOpen Access
Modafinil decreases anxiety-like behaviour in zebrafish
Author(s) -
Adrian Johnson,
Trevor J. Hamilton
Publication year - 2017
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.2994
Subject(s) - thigmotaxis , modafinil , zebrafish , narcolepsy , anxiety , escitalopram , pharmacology , psychology , medicine , neuroscience , biology , psychiatry , biochemistry , open field , gene , antidepressant
Modafinil (2-((diphenylmethyl)sulfinyl)acetamide), a selective dopamine and norepinephrine transporter inhibitor, is most commonly prescribed for narcolepsy but has gained recent interest for treating a variety of disorders. Zebrafish ( Danio rerio) are becoming a model of choice for pharmacological and behavioural research. To investigate the behavioural effects of modafinil on anxiety, we administered doses of 0, 2, 20, and 200 mg/L for 30 minutes then tested zebrafish in the novel approach test. In this test, the fish was placed into a circular arena with a novel object in the center and motion-tracking software was used to quantify the time the fish spent in the outer area of the arena (thigmotaxis zone), middle third of the arena (transition zone) and center of the arena, as well as total distance traveled, immobility and meandering. Modafinil caused a decrease in time spent in the thigmotaxis zone and increased time spent in the transition zone across all doses. Modafinil did not significantly alter the time spent in the center zone (near the novel object), the distance moved, meandering, or the duration of time spent immobile. We also validated this test as a measure of anxiety with the administration of ethanol (1%) which decreased time spent in the thigmotaxis zone and increased time spent in the transition zone. These results suggest that modafinil decreases anxiety-like behaviour in zebrafish.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom