Genomic and transcriptomic resources for assassin flies including the complete genome sequence ofProctacanthus coquilletti(Insecta: Diptera: Asilidae) and 16 representative transcriptomes
Author(s) -
Rebecca B. Dikow,
Paul B. Frandsen,
Mauren Turcatel,
Torsten Dikow
Publication year - 2017
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.2951
Subject(s) - biology , genome , evolutionary biology , phylogenomics , phylogenetic tree , sequence assembly , phylogenetics , sister group , whole genome sequencing , transcriptome , genetics , gene , clade , gene expression
A high-quality draft genome for Proctacanthus coquilletti (Insecta: Diptera: Asilidae) is presented along with transcriptomes for 16 Diptera species from five families: Asilidae, Apioceridae, Bombyliidae, Mydidae, and Tabanidae. Genome sequencing reveals that P. coquilletti has a genome size of approximately 210 Mbp and remarkably low heterozygosity (0.47%) and few repeats (15%). These characteristics helped produce a highly contiguous (N50 = 862 kbp) assembly, particularly given that only a single 2 × 250 bp PCR-free Illumina library was sequenced. A phylogenomic hypothesis is presented based on thousands of putative orthologs across the 16 transcriptomes. Phylogenetic relationships support the sister group relationship of Apioceridae + Mydidae to Asilidae. A time-calibrated phylogeny is also presented, with seven fossil calibration points, which suggests an older age of the split among Apioceridae, Asilidae, and Mydidae (158 mya) and Apioceridae and Mydidae (135 mya) than proposed in the AToL FlyTree project. Future studies will be able to take advantage of the resources presented here in order to produce large scale phylogenomic and evolutionary studies of assassin fly phylogeny, life histories, or venom. The bioinformatics tools and workflow presented here will be useful to others wishing to generate de novo genomic resources in species-rich taxa without a closely-related reference genome.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom