z-logo
open-access-imgOpen Access
Ontogenetic foraging activity and feeding selectivity of the Brazilian endemic parrotfishScarus zelindae
Author(s) -
Pedro Henrique Cipresso Pereira,
Marcus Santos,
Daniel Lino Lippi,
Pedro Silva
Publication year - 2016
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.2536
Subject(s) - parrotfish , biology , foraging , ecology , benthic zone , coral reef , benthos , reef
Parrotfish are fundamental species in controlling algal phase-shifts and ensuring the resilience of coral reefs. Nevertheless, little is known on their ecological role in the south-western Atlantic Ocean. The present study analysed the ontogenetic foraging activity and feeding selectivity of the Brazilian endemic parrotfish Scarus zelindae using behavioural observation and benthic composition analyses. We found a significant negative relationship between fish size and feeding rates for S. zelindae individuals. Thus, terminal phase individuals forage with lower feeding rates compared to juveniles and initial phase individuals. The highest relative foraging frequency of S. zelindae was on epilithic algae matrix (EAM) with similar values for juveniles (86.6%), initial phase (88.1%) and terminal phase (88.6%) individuals. The second preferred benthos for juveniles was sponge (11.6%) compared with initial (4.5%) and terminal life phases (1.3%). Different life phases of S. zelindae foraged on different benthos according to their availability. Based on Ivlev’s electivity index, juveniles selected EAM and sponge, while initial phase and terminal phase individuals only selected EAM. Our findings demonstrate that the foraging frequency of the endemic parrotfish S. zelindae is reduced according to body size and that there is a slight ontogenetic change in feeding selectivity. Therefore, ecological knowledge of ontogenetic variations on resource use is critical for the remaining parrotfish populations which have been dramatically reduced in the Southwestern Atlantic Ocean.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom