z-logo
open-access-imgOpen Access
Snake venomics ofBothrops punctatus, a semiarboreal pitviper species from Antioquia, Colombia
Author(s) -
Maritza Fernández Culma,
Jaime Andrés Pereañez,
Vitelbiúñez Rangel,
Bruno Lomonte
Publication year - 2014
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.246
Subject(s) - venom , snake venom , biology , viperidae , biochemistry , zoology
Bothrops punctatus is an endangered, semi-arboreal pitviper species distributed in Panamá, Colombia, and Ecuador, whose venom is poorly characterized. In the present work, the protein composition of this venom was profiled using the ‘snake venomics’ analytical strategy. Decomplexation of the crude venom by RP-HPLC and SDS-PAGE, followed by tandem mass spectrometry of tryptic digests, showed that it consists of proteins assigned to at least nine snake toxin families. Metalloproteinases are predominant in this secretion (41.5% of the total proteins), followed by C-type lectin/lectin-like proteins (16.7%), bradykinin-potentiating peptides (10.7%), phospholipases A 2 (93%), serine proteinases (5.4%), disintegrins (38%), L-amino acid oxidases (3.1%), vascular endothelial growth factors (17%), and cysteine-rich secretory proteins (1.2%). Altogether, 6.6% of the proteins were not identified. In vitro , the venom exhibited proteolytic, phospholipase A 2 , and L-amino acid oxidase activities, as well as angiotensin-converting enzyme (ACE)-inhibitory activity, in agreement with the obtained proteomic profile. Cytotoxic activity on murine C2C12 myoblasts was negative, suggesting that the majority of venom phospholipases A 2 likely belong to the acidic type, which often lack major toxic effects. The protein composition of B. punctatus venom shows a good correlation with toxic activities here and previously reported, and adds further data in support of the wide diversity of strategies that have evolved in snake venoms to subdue prey, as increasingly being revealed by proteomic analyses.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom