z-logo
open-access-imgOpen Access
Short and long term representation of an unfamiliar tone distribution
Author(s) -
Anja X. Cui,
Charlette Diercks,
Nikolaus F. Troje,
Lola L. Cuddy
Publication year - 2016
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.2399
Subject(s) - representation (politics) , tone (literature) , cognitive psychology , term (time) , mental representation , psychology , musical , task (project management) , computer science , cognition , linguistics , neuroscience , art , philosophy , physics , management , quantum mechanics , politics , political science , law , economics , visual arts
We report on a study conducted to extend our knowledge about the process of gaining a mental representation of music. Several studies, inspired by research on the statistical learning of language, have investigated statistical learning of sequential rules underlying tone sequences. Given that the mental representation of music correlates with distributional properties of music, we tested whether participants are able to abstract distributional information contained in tone sequences to form a mental representation. For this purpose, we created an unfamiliar music genre defined by an underlying tone distribution, to which 40 participants were exposed. Our stimuli allowed us to differentiate between sensitivity to the distributional properties contained in test stimuli and long term representation of the distributional properties of the music genre overall. Using a probe tone paradigm and a two-alternative forced choice discrimination task, we show that listeners are able to abstract distributional properties of music through mere exposure into a long term representation of music. This lends support to the idea that statistical learning is involved in the process of gaining musical knowledge.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom