z-logo
open-access-imgOpen Access
A framework for smartphone-enabled, patient-generated health data analysis
Author(s) -
Shreya S. Gollamudi,
Eric J. Topol,
Nathan E. Wineinger
Publication year - 2016
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.2284
Subject(s) - digital health , computer science , data science , autoregressive model , medicine , data mining , health care , statistics , mathematics , economics , economic growth
Background: Digital medicine and smartphone-enabled health technologies provide a novel source of human health and human biology data. However, in part due to its intricacies, few methods have been established to analyze and interpret data in this domain. We previously conducted a six-month interventional trial examining the efficacy of a comprehensive smartphone-based health monitoring program for individuals with chronic disease. This included 38 individuals with hypertension who recorded 6,290 blood pressure readings over the trial. Methods: In the present study, we provide a hypothesis testing framework for unstructured time series data, typical of patient-generated mobile device data. We used a mixed model approach for unequally spaced repeated measures using autoregressive and generalized autoregressive models, and applied this to the blood pressure data generated in this trial. Results: We were able to detect, roughly, a 2 mmHg decrease in both systolic and diastolic blood pressure over the course of the trial despite considerable intra- and inter-individual variation. Furthermore, by supplementing this finding by using a sequential analysis approach, we observed this result over three months prior to the official study end—highlighting the effectiveness of leveraging the digital nature of this data source to form timely conclusions. Conclusions: Health data generated through the use of smartphones and other mobile devices allow individuals the opportunity to make informed health decisions, and provide researchers the opportunity to address innovative health and biology questions. The hypothesis testing framework we present can be applied in future studies utilizing digital medicine technology or implemented in the technology itself to support the quantified self.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom