z-logo
open-access-imgOpen Access
The relationship between different exercise modes and visuospatial working memory in older adults: a cross-sectional study
Author(s) -
Wei Guo,
Biye Wang,
Yue Lu,
Qin Zhu,
Zhihao Shi,
Jie Ren
Publication year - 2016
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.2254
Subject(s) - working memory , spatial memory , cognition , psychology , task (project management) , mental rotation , audiology , physical medicine and rehabilitation , medicine , psychiatry , management , economics
The purpose of the study was to investigate the relationship between different exercise modes and visuospatial working memory in healthy older adults. A cross-sectional design was adopted. A total of 111 healthy older adults were enrolled in the study. They were classified by the exercise-related questionnaire to be in an open-skill group, closed-skill group or sedentary group. In experiment 1, the participants performed a visuospatial working memory task. The results indicated that both closed-skill ( p < 0.05) and open-skill ( p < 0.01) groups reached a higher accuracy than the sedentary group. Experiment 2 examined whether the exercise-induced benefit of working memory was manifested in passive maintenance or active manipulation of working memory which was assessed by visuospatial short-term memory task and visuospatial mental rotation task, respectively. The results showed that the open-skill ( p < 0.01) group was more accurate than the sedentary group in the visuospatial short-term memory task, whereas the group difference in the visuospatial mental rotation task was not significant. These findings combined to suggest that physical exercise was associated with better visuospatial working memory in older adults. Furthermore, open-skill exercises that demand higher cognitive processing showed selective benefit for passive maintenance of working memory.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom