z-logo
open-access-imgOpen Access
Microgeographic maladaptive performance and deme depression in response to roads and runoff
Author(s) -
Steven P. Brady
Publication year - 2013
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.163
Subject(s) - maladaptation , context (archaeology) , ecology , local adaptation , habitat , population , divergence (linguistics) , geography , amphibian , biology , demography , linguistics , philosophy , genetics , archaeology , sociology
Despite theoretical understanding and empirical detection of local adaptation in natural environments, our knowledge of such divergence in fragmented habitats remains limited, especially in the context of microgeographic spatial scales and contemporary time scales. I used a combination of reciprocal transplant and common garden exposure experiments to evaluate potential microgeographic divergence in a pool-breeding amphibian occupying a landscape fragmented by roads. As indicated by reduced rates of survival and increased rates of malformation, I found evidence for maladaptation in road adjacent populations. This response is in direct counterpoint to recently described local adaption by a cohabiting species of amphibian. These results suggest that while divergence might commonly follow habitat modification, the direction of its outcome cannot be generalized even in identical habitats. Further, maladaptive responses can be associated with a more generalized depression effect that transcends the local environment. Alongside recent reports, these results suggest that maladaptive responses may be an emerging consequence of human-induced environmental change. Thus future studies should carefully consider the population unit as a key level for inference.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom