z-logo
open-access-imgOpen Access
Ketoreductase TpdE fromRhodococcus jostiiTMP1: characterization and application in the synthesis of chiral alcohols
Author(s) -
Jonita Stankevičiūtė,
Simonas Kutanovas,
Rasa Rutkienė,
Daiva Tauraitė,
Romualdas Striela,
Rolandas Meškys
Publication year - 2015
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.1387
Subject(s) - rhodococcus , biocatalysis , chemistry , enantiomer , acetoin , substrate (aquarium) , enzyme , enantiomeric excess , stereochemistry , stereoselectivity , biotransformation , organic chemistry , combinatorial chemistry , enantioselective synthesis , reaction mechanism , catalysis , biology , fermentation , ecology
Background. Production of highly pure enantiomers of vicinal diols is desirable, but difficult to achieve. Enantiomerically pure diols and acyloins are valuable bulk chemicals, promising synthones and potential building blocks for chiral polymers. Enzymatic reduction of ketones is a useful technique for the synthesis of the desired enantiomeric alcohols. Here, we report on the characterization of a ketoreductase TpdE from Rhodococcus jostii TMP1 that is a prospective tool for the synthesis of such compounds. Results. In this study, NADPH-dependent short-chain dehydrogenase/reductase TpdE from Rhodococcus jostii TMP1 was characterized. The enzyme exhibited broad substrate specificity towards aliphatic 2,3-diketones, butan-3-one-2-yl alkanoates, as well as acetoin and its acylated derivatives. TpdE stereospecifically reduced α -diketones to the corresponding diols. The GC-MS analysis of the reduction products of 2,3- and 3,4-diketones indicated that TpdE is capable of reducing both keto groups in its substrate leading to the formation of two new chiral atoms in the product molecule. Bioconversions of diketones to corresponding diols occurred using either purified enzyme or a whole-cell Escherichia coli BL21 (DE3) biocatalyst harbouring recombinant TpdE. The optimum temperature and pH were determined to be 30–35 °C and 7.5, respectively. Conclusions. The broad substrate specificity and stereoselectivity of TpdE from Rhodococcus jostii TMP1 make it a promising biocatalyst for the production of enantiomerically pure diols that are difficult to obtain by chemical routes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom