Overcoming pain thresholds with multilevel models—an example using quantitative sensory testing (QST) data
Author(s) -
Gerrit Hirschfeld,
Markus Blankenburg,
Moritz Süß,
Boris Zernikow
Publication year - 2015
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.1335
Subject(s) - quantitative sensory testing , somatosensory system , sensitivity (control systems) , sensory system , neurology , psychology , response bias , cognitive psychology , physical medicine and rehabilitation , medicine , neuroscience , social psychology , electronic engineering , engineering
The assessment of somatosensory function is a cornerstone of research and clinical practice in neurology. Recent initiatives have developed novel protocols for quantitative sensory testing (QST). Application of these methods led to intriguing findings, such as the presence lower pain-thresholds in healthy children compared to healthy adolescents. In this article, we (re-) introduce the basic concepts of signal detection theory (SDT) as a method to investigate such differences in somatosensory function in detail. SDT describes participants’ responses according to two parameters, sensitivity and response-bias. Sensitivity refers to individuals’ ability to discriminate between painful and non-painful stimulations. Response-bias refers to individuals’ criterion for giving a “painful” response. We describe how multilevel models can be used to estimate these parameters and to overcome central critiques of these methods. To provide an example we apply these methods to data from the mechanical pain sensitivity test of the QST protocol. The results show that adolescents are more sensitive to mechanical pain and contradict the idea that younger children simply use more lenient criteria to report pain. Overall, we hope that the wider use of multilevel modeling to describe somatosensory functioning may advance neurology research and practice.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom