z-logo
open-access-imgOpen Access
Magnesium may be a key nutrient mechanism related to Fusarium wilt resistance: a new banana cultivar (Zhongjiao No. 9)
Author(s) -
Weifang Hu,
Baomei Yang,
Zhaohuan He,
Guoliang Li
Publication year - 2021
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.11141
Subject(s) - fusarium wilt , cultivar , nutrient , biology , horticulture , inoculation , agronomy , plant disease resistance , botany , fusarium oxysporum , ecology , biochemistry , gene
Zhongjiao No. 9 ( Musa spp.), a new Fusarium wilt-resistant banana cultivar, has shown considerable promise in the field. However, the growth, nutrient budgets, and key nutrient mechanisms related to Fusarium wilt resistance have not been explicitly examined. Here, the plant growth, yield, fruit quality, and nutrient budgets of Zhongjiao No. 9 were investigated. The results showed that Zhongjiao No. 9 has a large biomass with a high yield (54.65 t ha −1 ). The concentrations of N, P, K, Ca, Mg, Mn, B, and Mo were mainly high in the leaves and bunches of mother plants as well as in the leaves and pseudostems of daughter plants, while Cu and Fe were enriched in the roots of both mother plants and daughter plants. Linear discriminant analysis revealed that K, Ca, and Fe were important for plant growth in both the mother plants and daughter plants; S, Zn, and Mn were important for the mother plants, and N, P, and B for were important for the daughter plants. The nutrient uptake ratio of N:P:K:Ca:Mg:S was 1:0.13:3.86:0.68:0.40:0.07. Compared with local cultivars, there was a higher Mg concentration in pseudostems and a higher Mg uptake ratio were observed in Zhongjiao No. 9. Together, our results provide insight into the importance of Mg accumulation in relation to Fusarium wilt resistance, and we provide information on nutrient demands and fertilization application.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom