z-logo
open-access-imgOpen Access
Rotation survival forest for right censored data
Author(s) -
Lifeng Zhou,
QingSong Xu,
Hong Wang
Publication year - 2015
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.1009
Subject(s) - covariate , survival analysis , statistics , event (particle physics) , rotation (mathematics) , computer science , artificial intelligence , mathematics , physics , quantum mechanics
Recently, survival ensembles have found more and more applications in biological and medical research when censored time-to-event data are often confronted. In this research, we investigate the plausibility of extending a rotation forest, originally proposed for classification purpose, to survival analysis. Supported by the proper statistical analysis, we show that rotation survival forests are able to outperform the state-of-art survival ensembles on right censored data. We also provide a C-index based variable importance measure for evaluating covariates in censored survival data.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom