z-logo
open-access-imgOpen Access
Brain hothubs and dark functional networks: correlation analysis between amplitude and connectivity for Broca’s aphasia
Author(s) -
Feng Lin,
Shaoqiang Cheng,
Dongqing Qi,
YuEr Jiang,
Qian-Qian Lyu,
Lijuan Zhong,
Zhongli Jiang
Publication year - 2020
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.10057
Subject(s) - magnetoencephalography , broca's area , amplitude , aphasia , functional connectivity , correlation , node (physics) , neuroscience , dynamic functional connectivity , psychology , functional magnetic resonance imaging , computer science , electroencephalography , physics , mathematics , geometry , quantum mechanics
Source localization and functional brain network modeling are methods of identifying critical regions during cognitive tasks. The first activity estimates the relative differences of the signal amplitudes in regions of interest (ROI) and the second activity measures the statistical dependence among signal fluctuations. We hypothesized that the source amplitude–functional connectivity relationship decouples or reverses in persons having brain impairments. Five Broca’s aphasics with five matched cognitively healthy controls underwent overt picture-naming magnetoencephalography scans. The gamma-band (30–45 Hz) phase-locking values were calculated as connections among the ROIs. We calculated the partial correlation coefficients between the amplitudes and network measures and detected four node types, including hothubs with high amplitude and high connectivity, coldhubs with high connectivity but lower amplitude, non-hub hotspots, and non-hub coldspots. The results indicate that the high-amplitude regions are not necessarily highly connected hubs. Furthermore, the Broca aphasics utilized different hothub sets for the naming task. Both groups had dark functional networks composed of coldhubs. Thus, source amplitude–functional connectivity relationships could help reveal functional reorganizations in patients. The amplitude–connectivity combination provides a new perspective for pathological studies of the brain’s dark functional networks.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom