z-logo
open-access-imgOpen Access
In-network generalized trustworthy data collection for event detection in cyber-physical systems
Author(s) -
H. U. Rahman,
Guojun Wang,
Md Zakirul Alam Bhuiyan,
Jianer Chen
Publication year - 2021
Publication title -
peerj computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.806
H-Index - 24
ISSN - 2376-5992
DOI - 10.7717/peerj-cs.504
Subject(s) - computer science , wireless sensor network , data collection , event (particle physics) , data aggregator , logical data model , cyber physical system , real time computing , distributed computing , computer network , data modeling , database , statistics , physics , mathematics , quantum mechanics , operating system
Sensors in Cyber-Physical Systems (CPS) are typically used to collect various aspects of the region of interest and transmit the data towards upstream nodes for further processing. However, data collection in CPS is often unreliable due to severe resource constraints (e.g., bandwidth and energy), environmental impacts (e.g., equipment faults and noises), and security concerns. Besides, detecting an event through the aggregation in CPS can be intricate and untrustworthy if the sensor's data is not validated during data acquisition, before transmission, and before aggregation. This paper introduces In-network Generalized Trustworthy Data Collection (IGTDC) framework for event detection in CPS. This framework facilitates reliable data for aggregation at the edge of CPS. The main idea of IGTDC is to enable a sensor's module to examine locally whether the event's acquired data is trustworthy before transmitting towards the upstream nodes. It further validates whether the received data can be trusted or not before data aggregation at the sink node. Additionally, IGTDC helps to identify faulty sensors. For reliable event detection, we use collaborative IoT tactics, gate-level modeling with Verilog User Defined Primitive (UDP), and Programmable Logic Device (PLD) to ensure that the event's acquired data is reliable before transmitting towards the upstream nodes. We employ Gray code in gate-level modeling. It helps to ensure that the received data is reliable. Gray code also helps to distinguish a faulty sensor. Through simulation and extensive performance analysis, we demonstrate that the collected data in the IGTDC framework is reliable and can be used in the majority of CPS applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom