Classification of the drifting data streams using heterogeneous diversified dynamic class-weighted ensemble
Author(s) -
Martin Sarnovský,
Michal Kolárik
Publication year - 2021
Publication title -
peerj computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.806
H-Index - 24
ISSN - 2376-5992
DOI - 10.7717/peerj-cs.459
Subject(s) - concept drift , computer science , data stream mining , weighting , data mining , ensemble learning , data stream , machine learning , artificial intelligence , naive bayes classifier , dynamic data , class (philosophy) , support vector machine , programming language , medicine , telecommunications , radiology
Data streams can be defined as the continuous stream of data coming from different sources and in different forms. Streams are often very dynamic, and its underlying structure usually changes over time, which may result to a phenomenon called concept drift. When solving predictive problems using the streaming data, traditional machine learning models trained on historical data may become invalid when such changes occur. Adaptive models equipped with mechanisms to reflect the changes in the data proved to be suitable to handle drifting streams. Adaptive ensemble models represent a popular group of these methods used in classification of drifting data streams. In this paper, we present the heterogeneous adaptive ensemble model for the data streams classification, which utilizes the dynamic class weighting scheme and a mechanism to maintain the diversity of the ensemble members. Our main objective was to design a model consisting of a heterogeneous group of base learners (Naive Bayes, k-NN, Decision trees), with adaptive mechanism which besides the performance of the members also takes into an account the diversity of the ensemble. The model was experimentally evaluated on both real-world and synthetic datasets. We compared the presented model with other existing adaptive ensemble methods, both from the perspective of predictive performance and computational resource requirements.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom