z-logo
open-access-imgOpen Access
Inverse kinematics for cooperative mobile manipulators based on self-adaptive differential evolution
Author(s) -
Jesús Hernández-Barragán,
Carlos López-Franco,
Nancy AranaDaniel,
Alma Y. Alanís
Publication year - 2021
Publication title -
peerj computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.806
H-Index - 24
ISSN - 2376-5992
DOI - 10.7717/peerj-cs.419
Subject(s) - kinematics , inverse kinematics , jacobian matrix and determinant , control theory (sociology) , computer science , workspace , robot kinematics , trajectory , kinematics equations , mathematical optimization , mathematics , mobile robot , artificial intelligence , robot , physics , control (management) , classical mechanics , astronomy
This article presents an approach to solve the inverse kinematics of cooperative mobile manipulators for coordinate manipulation tasks. A self-adaptive differential evolution algorithm is used to solve the inverse kinematics as a global constrained optimization problem. A kinematics model of the cooperative mobile manipulators system is proposed, considering a system with two omnidirectional platform manipulators with n DOF. An objective function is formulated based on the forward kinematics equations. Consequently, the proposed approach does not suffer from singularities because it does not require the inversion of any Jacobian matrix. The design of the objective function also contains penalty functions to handle the joint limits constraints. Simulation experiments are performed to test the proposed approach for solving coordinate path tracking tasks. The solutions of the inverse kinematics show precise and accurate results. The experimental setup considers two mobile manipulators based on the KUKA Youbot system to demonstrate the applicability of the proposed approach.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom