Efficient video face recognition based on frame selection and quality assessment
Author(s) -
Angelina Kharchevnikova,
A. Savchenko
Publication year - 2021
Publication title -
peerj computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.806
H-Index - 24
ISSN - 2376-5992
DOI - 10.7717/peerj-cs.391
Subject(s) - selection (genetic algorithm) , facial recognition system , computer science , quality assessment , artificial intelligence , frame (networking) , face (sociological concept) , quality (philosophy) , video quality , pattern recognition (psychology) , computer vision , evaluation methods , engineering , reliability engineering , telecommunications , operations management , social science , metric (unit) , sociology , philosophy , epistemology
The article is considering the problem of increasing the performance and accuracy of video face identification. We examine the selection of the several best video frames using various techniques for assessing the quality of images. In contrast to traditional methods with estimation of image brightness/contrast, we propose to utilize the deep learning techniques that estimate the frame quality by using the lightweight convolutional neural network. In order to increase the effectiveness of the frame quality assessment step, we propose to distill knowledge of the cumbersome existing FaceQNet model for which there is no publicly available training dataset. The selected K -best frames are used to describe an input set of frames with a single average descriptor suitable for the nearest neighbor classifier. The proposed algorithm is compared with the traditional face feature extraction for each frame, as well as with the known clustering methods for a set of video frames.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom