z-logo
open-access-imgOpen Access
Explainable stock prices prediction from financial news articles using sentiment analysis
Author(s) -
Shilpa Gite,
Hrituja Khatavkar,
Ketan Kotecha,
Shilpi Srivastava,
Priyam Maheshwari,
Neerav Pandey
Publication year - 2021
Publication title -
peerj computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.806
H-Index - 24
ISSN - 2376-5992
DOI - 10.7717/peerj-cs.340
Subject(s) - computer science , sentiment analysis , stock market , stock (firearms) , stock price , machine learning , stock market prediction , artificial intelligence , deep learning , econometrics , data science , economics , mechanical engineering , paleontology , horse , series (stratigraphy) , engineering , biology
The stock market is very complex and volatile. It is impacted by positive and negative sentiments which are based on media releases. The scope of the stock price analysis relies upon ability to recognise the stock movements. It is based on technical fundamentals and understanding the hidden trends which the market follows. Stock price prediction has consistently been an extremely dynamic field of exploration and research work. However, arriving at the ideal degree of precision is still an enticing challenge. In this paper, we are proposing a combined effort of using efficient machine learning techniques coupled with a deep learning technique—Long Short Term Memory (LSTM)—to use them to predict the stock prices with a high level of accuracy. Sentiments derived by users from news headlines have a tremendous effect on the buying and selling patterns of the traders as they easily get influenced by what they read. Hence, fusing one more dimension of sentiments along with technical analysis should improve the prediction accuracy. LSTM networks have proved to be a very useful tool to learn and predict temporal data having long term dependencies. In our work, the LSTM model uses historical stock data along with sentiments from news items to create a better predictive model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom