Real-time quintic Hermite interpolation for robot trajectory execution
Author(s) -
Morten Lind
Publication year - 2020
Publication title -
peerj computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.806
H-Index - 24
ISSN - 2376-5992
DOI - 10.7717/peerj-cs.304
Subject(s) - quintic function , trajectory , piecewise , control theory (sociology) , computer science , hermite interpolation , robot , interpolation (computer graphics) , real time control system , mathematics , artificial intelligence , hermite polynomials , control (management) , motion (physics) , mathematical analysis , physics , quantum mechanics , astronomy , nonlinear system
This paper presents a real-time joint trajectory interpolation system for the purpose of frequency scaling the low cycle time of a robot controller, allowing a Python application to real-time control the robot at a moderate cycle time. Interpolation is based on quintic Hermite piece-wise splines. The splines are calculated in real-time, in a piecewise manner between the high-level, long cycle time trajectory points, while sampling of these splines at an appropriate, shorter cycle time for the real-time requirement of the lower-level system. The principle is usable in general, and the specific implementation presented is for control of the Panda robot from Franka Emika. Tracking delay analysis is presented based on a cosine trajectory. A simple test application has been implemented, demonstrating real-time feeding of a pre-calculated trajectory for cutting with a knife. Estimated forces on the robot wrist are recorded during cutting and presented in the paper.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom