Asymptotic expansion of large eigenvalues for a class of unbounded Jacobi matrices
Author(s) -
Ayoub Harrat,
El Hassan Zerouali,
Lech Zieliński
Publication year - 2020
Publication title -
opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2020.40.2.241
Subject(s) - tridiagonal matrix , eigenvalues and eigenvectors , mathematics , class (philosophy) , asymptotic expansion , spectrum (functional analysis) , pure mathematics , jacobi operator , discrete spectrum , mathematical analysis , jacobi polynomials , orthogonal polynomials , physics , computer science , quantum mechanics , artificial intelligence
We investigate a class of infinite tridiagonal matrices which define unbounded self-adjoint operators with discrete spectrum. Our purpose is to establish the asymptotic expansion of large eigenvalues and to compute two correction terms explicitly.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom