On a singular nonlinear Neumann problem
Author(s) -
J. Chabrowski
Publication year - 2014
Publication title -
opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2014.34.2.271
Subject(s) - mathematics , nonlinear system , von neumann architecture , neumann boundary condition , mathematical analysis , pure mathematics , boundary value problem , physics , quantum mechanics
We investigate the solvability of the Neumann problem involving two critical exponents: Sobolev and Hardy-Sobolev. We establish the existence of a solution in three cases: \(\text{(i)}\;\ 2\lt p+1\lt 2^*(s),\) \(\text{(ii)}\;\ p+1=2^*(s)\) and \(\text{(iii)}\;\ 2^*(s)\lt p+1 \leq 2^*,\) where \(2^*(s)=\frac{2(N-s)}{N-2},\) \(0\lt s\lt 2,\) and \(2^*=\frac{2N}{N-2}\) denote the critical Hardy-Sobolev exponent and the critical Sobolev exponent, respectively
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom