z-logo
open-access-imgOpen Access
On a class of nonhomogenous quasilinear problems in Orlicz-Sobolev spaces
Author(s) -
Asma Karoui Souayah
Publication year - 2012
Publication title -
opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2012.32.4.731
Subject(s) - mathematics , sobolev space , class (philosophy) , pure mathematics , mathematical analysis , artificial intelligence , computer science
We study the nonlinear boundary value problem \(-div ((a_1(|\nabla u(x)|)+a_2(|\nabla u(x)|))\nabla u(x))=\lambda |u|^{q(x)-2}u-\mu |u|^{\alpha(x)-2}u\) in \(\Omega\), \(u = 0\) on \(\partial \Omega\) , where \(\Omega\) is a bounded domain in \(\mathbb{R}^N\) with smooth boundary, \(\lambda\), \(\mu\) are positive real numbers, \(q\) and \(\alpha\) are continuous functions and \(a_1\), \(a_2\) are two mappings such that \(a_1(|t|)t\), \(a_2(|t|)t\) are increasing homeomorphisms from \(\mathbb{R}\) to \(\mathbb{R}\). The problem is analyzed in the context of Orlicz-Soboev spaces. First we show the existence of infinitely many weak solutions for any \(\lambda,\mu \gt 0\). Second we prove that for any \(\mu \gt 0\), there exists \(\lambda_*\) sufficiently small, and \(\lambda ^*\) large enough such that for any \(\lambda \in (0,\lambda_*)\cup(\lambda^*,\infty)\), the above nonhomogeneous quasilinear problem has a non-trivial weak solution

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom