z-logo
open-access-imgOpen Access
Existence and solution sets of impulsive functional differential inclusions with multiple delay
Author(s) -
Mohamed Helal,
Abdelghani Ouahab
Publication year - 2012
Publication title -
opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2012.32.2.249
Subject(s) - differential inclusion , compact space , retract , mathematics , combinatorics , functional differential equation , order (exchange) , regular polygon , operator (biology) , mathematical analysis , differential equation , pure mathematics , geometry , biochemistry , chemistry , finance , repressor , transcription factor , economics , gene
In this paper, we present some existence results of solutions and study the topological structure of solution sets for the following first-order impulsive neutral functional differential inclusions with initial condition: \[ \begin{cases}\frac{d}{dt}[y(t)-g(t,y_t)] \in F(t,y_t) + \sum_{i=1}^{n_*} y(t-Ti), & a.e.\, t \in J\setminus\{t_1,...,t_m\} \\ y(t_k^+)-y(t_k^-)=I_k(y(t_k^-)), & k=1,...,m, \\ y(t)=\phi(t), & t \in [-r,0],\end{cases} \] where \(J:=[0,b]\) and \(0=t_0\lt t_1 \lt ...\lt t_m\lt t_{m+1}=b\) (\(m \in \mathbb{N}^*\)), \(F\) is a set-valued map and \(g\) is single map. The functions \(I_k\) characterize the jump of the solutions at impulse points \(t_k\) (\(k=1,...,m\)). Our existence result relies on a nonlinear alternative for compact u.s.c. maps. Then, we present some existence results and investigate the compactness of solution sets, some regularity of operator solutions and absolute retract (in short AR). The continuousdependence of solutions on parameters in the convex case is also examined. Applications to a problem from control theory are provided

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom