Sensitivity Analysis in Observational Research: Introducing the E-Value
Author(s) -
Tyler J. VanderWeele,
Peng Ding
Publication year - 2017
Publication title -
annals of internal medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.839
H-Index - 390
eISSN - 1539-3704
pISSN - 0003-4819
DOI - 10.7326/m16-2607
Subject(s) - medicine , observational study , sensitivity (control systems) , value (mathematics) , statistics , electronic engineering , engineering , mathematics
Sensitivity analysis is useful in assessing how robust an association is to potential unmeasured or uncontrolled confounding. This article introduces a new measure called the "E-value," which is related to the evidence for causality in observational studies that are potentially subject to confounding. The E-value is defined as the minimum strength of association, on the risk ratio scale, that an unmeasured confounder would need to have with both the treatment and the outcome to fully explain away a specific treatment-outcome association, conditional on the measured covariates. A large E-value implies that considerable unmeasured confounding would be needed to explain away an effect estimate. A small E-value implies little unmeasured confounding would be needed to explain away an effect estimate. The authors propose that in all observational studies intended to produce evidence for causality, the E-value be reported or some other sensitivity analysis be used. They suggest calculating the E-value for both the observed association estimate (after adjustments for measured confounders) and the limit of the confidence interval closest to the null. If this were to become standard practice, the ability of the scientific community to assess evidence from observational studies would improve considerably, and ultimately, science would be strengthened.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom