Tangible AR interaction based on fingertip touch using small-sized nonsquare markers
Author(s) -
Hyungjun Park,
Ho-Kyun Jung,
Sang-Jin Park
Publication year - 2014
Publication title -
journal of computational design and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.764
H-Index - 24
eISSN - 2288-5048
pISSN - 2288-4300
DOI - 10.7315/jcde.2014.028
Subject(s) - visualization , computer science , immersion (mathematics) , computer vision , artificial intelligence , human–computer interaction , computer graphics (images) , mathematics , pure mathematics
Although big-sized markers are good for accurate marker recognition and tracking, they are easily occluded by other objects and deteriorate natural visualization and level of immersion during user interaction in AR environments. In this paper, we propose an approach to exploiting the use of rectangular markers to support tangible AR interaction based on fingertip touch using small-sized markers. It basically adjusts the length, width, and interior area of rectangular markers to make them more suitably fit to longish objects like fingers. It also utilizes convex polygons to resolve the partial occlusion of a marker and properly enlarges the pattern area of a marker while adjusting its size without deteriorating the quality of marker detection. We obtained encouraging results from users that the approach can provide better natural visualization and higher level of immersion, and be accurate and tangible enough to support a pseudo feeling of touching virtual products with human hands or fingertips during design evaluation of digital handheld products
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom