z-logo
open-access-imgOpen Access
Multicriteria shape design of a sheet contour in stamping
Author(s) -
Fatima-Zahra Oujebbour,
Abderrahmane Habbal,
Rachid Ellaia,
Ziheng Zhao
Publication year - 2014
Publication title -
journal of computational design and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.764
H-Index - 24
eISSN - 2288-5048
pISSN - 2288-4300
DOI - 10.7315/jcde.2014.018
Subject(s) - multi objective optimization , sheet metal , mathematical optimization , sorting , simulated annealing , stamping , pareto principle , intersection (aeronautics) , algorithm , computer science , engineering , mathematics , mechanical engineering , aerospace engineering
International audienceOne of the hottest challenges in automotive industry is related to weight reduction in sheet metal forming processes, in order to produce a high quality metal part with minimal material cost. Stamping is the most widely used sheet metal forming process; but its implementation comes with several fabrication flaws such as springback and failure. A global and simple approach to circumvent these unwanted process drawbacks consists in optimizing the initial blank shape with innovative methods. The aim of this paper is to introduce an efficient methodology to deal with complex, computationally expensive multicriteria optimization problems. Our approach is based on the combination of methods to capture the Pareto Front, approximate criteria (to save computational costs) and global optimizers. To illustrate the efficiency, we consider the stamping of an industrial workpiece as test-case. Our approach is applied to the springback and failure criteria. To optimize these two criteria, a global optimization algorithm was chosen. It is the Simulated Annealing algorithm hybridized with the Simultaneous Perturbation Stochastic Approximation in order to gain in time and in precision. The multicriteria problems amounts to the capture of the Pareto Front associated to the two criteria. Normal Boundary Intersection and Normalized Normal Constraint Method are considered for generating a set of Pareto-optimal solutions with the characteristic of uniform distribution of front points. The computational results are compared to those obtained with the well-known Non-dominated Sorting Genetic Algorithm II. The results show that our proposed approach is efficient to deal with the multicriteria shape optimization of highly non-linear mechanical systems

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom