z-logo
open-access-imgOpen Access
Automatic detection of the optimal ejecting direction based on a discrete Gauss map
Author(s) -
Masatomo Inui,
Hidekazu Kamei,
Nobuyuki Umezu
Publication year - 2014
Publication title -
journal of computational design and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.764
H-Index - 24
eISSN - 2288-5048
pISSN - 2288-4300
DOI - 10.7315/jcde.2014.005
Subject(s) - gauss , geodesic , point (geometry) , algorithm , distribution (mathematics) , cad , geometry , mathematics , computer science , topology (electrical circuits) , engineering , engineering drawing , mathematical analysis , combinatorics , physics , quantum mechanics
In this paper, the authors propose a system for assisting mold designers of plastic parts. With a CAD model of a part, the system automatically determines the optimal ejecting direction of the part with minimum undercuts. Since plastic parts are generally very thin, many rib features are placed on the inner side of the part to give sufficient structural strength. Our system extracts the rib features from the CAD model of the part, and determines the possible ejecting directions based on the geometric properties of the features. The system then selects the optimal direction with minimum undercuts. Possible ejecting directions are represented as discrete points on a Gauss map. Our new point distribution method for the Gauss map is based on the concept of the architectural geodesic dome. A hierarchical structure is also introduced in the point distribution, with a higher level “rough” Gauss map with rather sparse point distribution and another lower level “fine” Gauss map with much denser point distribution. A system is implemented and computational experiments are performed. Our system requires less than 10 seconds to determine the optimal ejecting direction of a CAD model with more than 1 million polygons

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom