z-logo
open-access-imgOpen Access
Relaxed DP-coloring and another generalization of DP-coloring on planar graphs without 4-cycles and 7-cycles
Author(s) -
Sribunhung Sarawute,
Nakprasit Keaitsuda Maneeruk,
Nakprasit Kittikorn,
Sittitrai Pongpat
Publication year - 2021
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2405
Subject(s) - mathematics , combinatorics , generalization , list coloring , complete coloring , edge coloring , greedy coloring , fractional coloring , planar graph , brooks' theorem , discrete mathematics , chordal graph , graph , 1 planar graph , mathematical analysis , graph power , line graph
DP-coloring is generalized via relaxed coloring and variable degeneracy in [P. Sittitrai and K. Nakprasit, Su cient conditions on planar graphs to have a relaxed DP-3-coloring, Graphs Combin. 35 (2019) 837–845], [K.M. Nakprasit and K. Nakprasit, A generalization of some results on list coloring and DP-coloring, Graphs Combin. 36 (2020) 1189–1201] and [P. Sittitrai and K. Nakprasit, An analogue of DP-coloring for variable degeneracy and its applications, Discuss. Math. Graph Theory]. In this work, we introduce another concept that includes two previous generalizations. We demonstrate its application on planar graphs without 4-cycles and 7-cycles. One implication is that the vertex set of every planar graph without 4-cycles and 7-cycles can be partitioned into three sets in which each of them induces a linear forest and one of them is an independent set. Additionally, we show that every planar graph without 4-cycles and 7-cycles is DP-(1, 1, 1)-colorable. This generalizes a result of Lih et al. [A note on list improper coloring planar graphs, Appl. Math. Lett. 14 (2001) 269–273] that every planar graph without 4-cycles and 7-cycles is (3, 1)*-choosable.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom