Relaxed DP-coloring and another generalization of DP-coloring on planar graphs without 4-cycles and 7-cycles
Author(s) -
Sribunhung Sarawute,
Nakprasit Keaitsuda Maneeruk,
Nakprasit Kittikorn,
Sittitrai Pongpat
Publication year - 2021
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2405
Subject(s) - mathematics , combinatorics , generalization , list coloring , complete coloring , edge coloring , greedy coloring , fractional coloring , planar graph , brooks' theorem , discrete mathematics , chordal graph , graph , 1 planar graph , mathematical analysis , graph power , line graph
DP-coloring is generalized via relaxed coloring and variable degeneracy in [P. Sittitrai and K. Nakprasit, Su cient conditions on planar graphs to have a relaxed DP-3-coloring, Graphs Combin. 35 (2019) 837–845], [K.M. Nakprasit and K. Nakprasit, A generalization of some results on list coloring and DP-coloring, Graphs Combin. 36 (2020) 1189–1201] and [P. Sittitrai and K. Nakprasit, An analogue of DP-coloring for variable degeneracy and its applications, Discuss. Math. Graph Theory]. In this work, we introduce another concept that includes two previous generalizations. We demonstrate its application on planar graphs without 4-cycles and 7-cycles. One implication is that the vertex set of every planar graph without 4-cycles and 7-cycles can be partitioned into three sets in which each of them induces a linear forest and one of them is an independent set. Additionally, we show that every planar graph without 4-cycles and 7-cycles is DP-(1, 1, 1)-colorable. This generalizes a result of Lih et al. [A note on list improper coloring planar graphs, Appl. Math. Lett. 14 (2001) 269–273] that every planar graph without 4-cycles and 7-cycles is (3, 1)*-choosable.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom