A note on forcing 3-repetitions in degree sequences
Author(s) -
Shimon Kogan
Publication year - 2020
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2376
Subject(s) - mathematics , degree (music) , forcing (mathematics) , combinatorics , mathematical analysis , acoustics , physics
In Caro, Shapira and Yuster [1] it is proven that for any graph G with at least 5 vertices, one can delete at most 6 vertices such that the subgraph obtained has at least three vertices with the same degree. Furthermore they show that for certain graphs one needs to remove at least 3 vertices in order that the resulting graph has at least 3 vertices of the same degree. In this note we prove that for any graph G with at least 5 vertices, one can delete at most 5 vertices such that the subgraph obtained has at least three vertices with the same degree. We also show that for any triangle-free graph G with at least 6 vertices, one can delete at most one vertex such that the subgraph obtained has at least three vertices with the same degree and this result is tight for triangle-free graphs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom