z-logo
open-access-imgOpen Access
About an extremal problem of bigraphic pairs with a realization containing Ks,t
Author(s) -
Jianhua Yin,
Bing Wang
Publication year - 2020
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2375
Subject(s) - mathematics , realization (probability) , combinatorics , discrete mathematics , statistics
Let π = (f1, . . . , fm; g1, . . . , gn), where f1, . . . , fm and g1, . . . , gn are two non-increasing sequences of nonnegative integers. The pair π = (f1, . . . , fm; g1, . . . , gn) is said to be a bigraphic pair if there is a simple bipartite graph G = (X ∪ Y,E) such that f1, . . . , fm and g1, . . . , gn are the degrees of the vertices in X and Y , respectively. In this case, G is referred to as a realization of π. We say that π is a potentially Ks,t-bigraphic pair if some realization of π contains Ks,t (with s vertices in the part of size m and t in the part of size n). Ferrara et al. [Potentially H-bigraphic sequences, Discuss. Math. Graph Theory 29 (2009) 583–596] defined σ(Ks,t,m, n) to be the minimum integer k such that every bigraphic pair π = (f1, . . . , fm; g1, . . . , gn) with σ(π) = f1+· · ·+fm ≥ k is potentiallyKs,t-bigraphic. They determined σ(Ks,t,m, n) for n ≥ m ≥ 9st. In this paper, we first give a procedure and two sufficient conditions to determine if π is a potentially Ks,t-bigraphic pair. Then, we determine σ(Ks,t,m, n) for n ≥ m ≥ s and n ≥ (s+ 1)t− (2s− 1)t+ s− 1. This provides a solution to a problem due to Ferrara et al.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom