Nested locally Hamiltonian graphs and the Oberly-Sumner Conjecture
Author(s) -
Johan P. de Wet,
Marietjie Frick
Publication year - 2020
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2346
Subject(s) - mathematics , combinatorics , conjecture , discrete mathematics
A graph G is locally P, abbreviated LP, if for every vertex v in G the open neighbourhood N(v) of v is non-empty and induces a graph with property P. Specifically, a graph G without isolated vertices is locally connected (LC) if N(v) induces a connected graph for each v ∈ V (G), and locally hamiltonian (LH) if N(v) induces a hamiltonian graph for each v ∈ V (G). A graph G is locally locally P (abbreviated LP) if N(v) is non-empty and induces a locally P graph for every v ∈ V (G). This concept is generalized to an arbitrary degree of nesting. For any k ≥ 0 we call a graph locally k-nested-hamiltonian if it is LC for m = 0, 1, . . . , k and LH (with LC and LH meaning connected and hamiltonian, respectively). The class of locally k-nested-hamiltonian graphs contains important subclasses. For example, Skupień had already observed in 1963 that the class of connected LH graphs (which is the class of locally 1-nested-hamiltonian graphs) contains all triangulations of closed surfaces. We show that for any k ≥ 1 the class of locally k-nested-hamiltonian graphs contains all simple-clique (k + 2)trees. In 1979 Oberly and Sumner proved that every connected K1,3-free graph that is locally connected is hamiltonian. They conjectured that for k ≥ 1, every connected K1,k+3-free graph that is locally (k+ 1)-connected is hamiltonian. We show that locally k-nested-hamiltonian graphs are locally (k+1)-connected and consider the weaker conjecture that every K1,k+3-free graph that is locally k-nested-hamiltonian is hamiltonian. We show that if our conjecture is true, it would be “best possible” in the sense that for every k ≥ 1 there exist K1,k+4-free locally k-nested-hamiltonian graphs that are non-hamiltonian. We also attempt to determine the minimum order of non-hamiltonian locally k-nested-hamiltonian graphs and investigate the complexity of the Hamilton Cycle Problem for locally k-nested-hamiltonian graphs with restricted maximum degree. 2 J.P. de Wet and M. Frick
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom