z-logo
open-access-imgOpen Access
Graph classes generated by Mycielskians
Author(s) -
Mieczysław Borowiecki,
Piotr Borowiecki,
Ewa DrgasBurchardt,
Elżbieta Sidorowicz
Publication year - 2020
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2345
Subject(s) - mathematics , combinatorics , graph , discrete mathematics
In this paper we use the classical notion of weak Mycielskian M′(G) of a graph G and the following sequence: M′0(G) = G, M′1(G) = M′(G), and M′n(G) = M′(M′n−1(G)), to show that if G is a complete graph of order p, then the above sequence is a generator of the class of p-colorable graphs. Similarly, using Mycielskian M(G) we show that analogously defined sequence is a generator of the class consisting of graphs for which the chromatic number of the subgraph induced by all vertices that belong to at least one triangle is at most p. We also address the problem of characterizing the latter class in terms of forbidden graphs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom