z-logo
open-access-imgOpen Access
Independence number and packing coloring of generalized Mycielski graphs
Author(s) -
Ez-Zobair Bidine,
Taoufiq Gadi,
Mustapha Kchikech
Publication year - 2020
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2337
Subject(s) - mathematics , combinatorics , independence number , independence (probability theory) , discrete mathematics , graph , statistics
For a positive integer k ⩾ 1, a graph G with vertex set V is said to be k-packing colorable if there exists a mapping f : V ↦ {1, 2, . . ., k} such that any two distinct vertices x and y with the same color f(x) = f(y) are at distance at least f(x) + 1. The packing chromatic number of a graph G, denoted by χρ(G), is the smallest integer k such that G is k-packing colorable. In this work, we study both independence and packing colorings in the m-generalized Mycielskian of a graph G, denoted μm(G). We first give an explicit formula for α (μm(G)) when m is odd and bounds when m is even. We then use these results to give exact values of α(μm(Kn)) for any m and n. Next, we give bounds on the packing chromatic number, χρ, of μm(G). We also prove the existence of large planar graphs whose packing chromatic number is 4. The rest of the paper is focused on packing chromatic numbers of the Mycielskian of paths and cycles.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom