z-logo
open-access-imgOpen Access
Finding dominating induced matchings in P9-free graphs in polynomial time
Author(s) -
Brandstädt Andreas,
Mosca Raffaele
Publication year - 2020
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2336
Subject(s) - combinatorics , mathematics , bipartite graph , time complexity , matching (statistics) , discrete mathematics , graph , statistics
Let $G=(V,E)$ be a finite undirected graph. An edge set $E' \subseteq E$ is a {\em dominating induced matching} ({\em d.i.m.}) in $G$ if every edge in $E$ is intersected by exactly one edge of $E'$. The \emph{Dominating Induced Matching} (\emph{DIM}) problem asks for the existence of a d.i.m.\ in $G$; this problem is also known as the \emph{Efficient Edge Domination} problem; it is the Efficient Domination problem for line graphs. The DIM problem is \NP-complete even for very restricted graph classes such as planar bipartite graphs with maximum degree 3 but is solvable in linear time for $P_7$-free graphs, and in polynomial time for $S_{1,2,4}$-free graphs as well as for $S_{2,2,2}$-free graphs and for $S_{2,2,3}$-free graphs. In this paper, combining two distinct approaches, we solve it in polynomial time for $P_9$-free graphs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom