z-logo
open-access-imgOpen Access
Colorings of plane graphs without long monochromatic facial paths
Author(s) -
Július Czap,
Igor Fabrici,
Stanislav Jendrol′
Publication year - 2020
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2319
Subject(s) - monochromatic color , combinatorics , mathematics , graph , path graph , plane (geometry) , planar graph , wheel graph , discrete mathematics , graph power , line graph , physics , geometry , optics
Let G be a plane graph. A facial path of G is a subpath of the boundary walk of a face of G. We prove that each plane graph admits a 3-coloring (a 2-coloring) such that every monochromatic facial path has at most 3 vertices (at most 4 vertices). These results are in a contrast with the results of Chartrand, Geller, Hedetniemi (1968) and Axenovich, Ueckerdt, Weiner (2017) which state that for any positive integer t there exists a 4-colorable (a 3-colorable) plane graph Gt such that in any its 3-coloring (2-coloring) there is a monochromatic path of length at least t. We also prove that every plane graph is 2-list-colorable in such a way that every monochromatic facial path has at most 4 vertices.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom