Turan's theorem implies Stanley's bound
Author(s) -
Vladimir Nikiforov
Publication year - 2020
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2287
Subject(s) - mathematics , combinatorics , discrete mathematics , mathematical economics
Let G be a graph with m edges and let ρ be the largest eigenvalue of its adjacency matrix. It is shown that ρ≤2(1-⌊ 1/2+2m+1/4 ⌋-1)m, \rho \le \sqrt {2\left( {1 - {{\left\lfloor {1/2 + \sqrt {2m + 1/4} } \right\rfloor }^{ - 1}}} \right)} m, improving the well-known bound of Stanley. Moreover, writing ω for the clique number of G and Wk for the number of its walks on k vertices, it is shown that the sequence { ((1-1/ω)W2k)1/2k } k=1∞ \left\{ {{{\left( {\left( {1 - 1/\omega } \right){W_{{2^k}}}} \right)}^{1/{2^k}}}} \right\}_{k = 1}^\infty is nonincreasing and converges to ρ.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom