On {a,b}-edge-weightings of bipartite graphs with odd a,b
Author(s) -
Julien Bensmail,
Fionn Mc Inerney,
Kasper Szabo Lyngsie
Publication year - 2019
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2250
Subject(s) - bipartite graph , enhanced data rates for gsm evolution , combinatorics , mathematics , computer science , graph , artificial intelligence
For any S⊂ℤ we say that a graph G has the S-property if there exists an S-edge-weighting w:E(G)→S such that for any pair of adjacent vertices u,v we have Σ_{e∈E(v)} w(e) ≠ Σ_{e∈E(u)} w(e), where E(v) and E(u) are the sets of edges incident to v and u respectively. This work focuses on {a,a+2}-edge-weightings where a∈ℤ is odd. We show that a 2-connected bipartite graph has the {a,a+2}-property if and only if it is not a so-called odd multi-cactus. In the case of trees, we show that only one case is pathological. That is, we show that all trees have the {a,a+2}-property for odd a≠−1, while there is an easy characterization of trees without the {−1,1}-property.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom