Fair total domination number in cactus graphs
Author(s) -
Majid Hajian,
Nader Jafari Rad
Publication year - 2019
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2225
Subject(s) - dominating set , domination analysis , combinatorics , mathematics , vertex (graph theory) , graph , cardinality (data modeling) , cactus , discrete mathematics , set (abstract data type) , computer science , biology , botany , data mining , programming language
For k ≥ 1, a k-fair total dominating set (or just kFTD-set) in a graph G is a total dominating set S such that |N(v) ∩ S| = k for every vertex v ∈ V\S. The k-fair total domination number of G, denoted by ftdk(G), is the minimum cardinality of a kFTD-set. A fair total dominating set, abbreviated FTD-set, is a kFTD-set for some integer k ≥ 1. The fair total domination number of a nonempty graph G, denoted by ftd(G), of G is the minimum cardinality of an FTD-set in G. In this paper, we present upper bounds for the 1-fair total domination number of cactus graphs, and characterize cactus graphs achieving equality for the upper bounds.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom