z-logo
open-access-imgOpen Access
Restrained domination in self-complementary graphs
Author(s) -
Wyatt J. Desormeaux,
Teresa W. Haynes,
Michael A. Henning
Publication year - 2019
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2222
Subject(s) - mathematics , combinatorics , domination analysis , discrete mathematics , graph , vertex (graph theory)
A self-complementary graph is a graph isomorphic to its complement. A set S of vertices in a graph G is a restrained dominating set if every vertex in V(G) \ S is adjacent to a vertex in S and to a vertex in V(G) \ S. The restrained domination number of a graph G is the minimum cardinality of a restrained dominating set of G. In this paper, we study restrained domination in self-complementary graphs. In particular, we characterize the self-complementary graphs having equal domination and restrained domination numbers.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom