z-logo
open-access-imgOpen Access
Outpaths of arcs in regular 3-partite tournaments
Author(s) -
Qiaoping Guo,
Meng Wei
Publication year - 2019
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2217
Subject(s) - mathematics , combinatorics
Guo [Outpaths in semicomplete multipartite digraphs, Discrete Appl. Math. 95 (1999) 273–277] proposed the concept of the outpath in digraphs. An outpath of a vertex x (an arc xy, respectively) in a digraph is a directed path starting at x (an arc xy, respectively) such that x does not dominate the end vertex of this directed path. A k-outpath is an outpath of length k. The outpath is a generalization of the directed cycle. A c-partite tournament is an orientation of a complete c-partite graph. In this paper, we investigate outpaths of arcs in regular 3-partite tournaments. We prove that every arc of an r-regular 3-partite tournament has 2(when r ≥ 1), 3(when r ≥ 2), and 5-, 6-outpaths (when r ≥ 3). We also give the structure of an r-regular 3-partite tournament D with r ≥ 2 that contains arcs which have no 4-outpaths. Based on these results, we conjecture that for all k ∈ {1, 2, . . . , r − 1}, every arc of r-regular 3-partite tournaments with r ≥ 2 has (3k−1)and 3k-outpaths, and it has a (3k+1)outpath except an r-regular 3-partite tournament.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom