Asymptotic behavior of the edge metric dimension of the random graph
Author(s) -
Nina Zublirina
Publication year - 2019
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2210
Subject(s) - mathematics , combinatorics , dimension (graph theory) , graph , metric (unit) , random graph , metric dimension , enhanced data rates for gsm evolution , discrete mathematics , line graph , 1 planar graph , economics , telecommunications , operations management , computer science
Given a simple connected graph G(V,E), the edge metric dimension, denoted edim(G), is the least size of a set S ⊆ V that distinguishes every pair of edges of G, in the sense that the edges have pairwise different tuples of distances to the vertices of S. In this paper we prove that the edge metric dimension of the Erdős-Rényi random graph G(n, p) with constant p is given by edim(G(n, p)) = (1 + o(1)) 4 log n log(1/q) , where q = 1− 2p(1− p)(2− p).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom