z-logo
open-access-imgOpen Access
Removable edges on a Hamilton cycle or outside a cycle in a 4-connected graph
Author(s) -
Hajo Broersma,
Qin Ma,
Yaping Mao,
Jichang Wu
Publication year - 2019
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2209
Subject(s) - combinatorics , mathematics , wheel graph , vertex (graph theory) , graph , biconnected graph , multiple edges , connectivity , complement graph , vertex connectivity , discrete mathematics , graph power , line graph
Let G be a 4-connected graph. We call an edge e of G removable if the following sequence of operations results in a 4-connected graph: delete e from G; if there are vertices with degree 3 in G− e, then for each (of the at most two) such vertex x, delete x from G − e and turn the three neighbors of x into a clique by adding any missing edges (avoiding multiple edges). In this paper, we continue the study on the distribution of removable edges in a 4-connected graph G, in particular outside a cycle of G or in a spanning tree or on a Hamilton cycle of G. We give examples to show that our results are in some sense best possible.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom