z-logo
open-access-imgOpen Access
The vertex- rainbow connection number of some graph operations
Author(s) -
Xueliang Li,
Hengzhe Li,
Yingbin Ma
Publication year - 2019
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2206
Subject(s) - combinatorics , rainbow , vertex (graph theory) , mathematics , cartesian product , graph , discrete mathematics , physics , optics
A path in an edge-colored (respectively vertex-colored) graph G is rainbow (respectively vertex-rainbow) if no two edges (respectively internal vertices) of the path are colored the same. An edge-colored (respectively vertex-colored) graph G is rainbow connected (respectively vertex-rainbow connected) if every two distinct vertices are connected by a rainbow (respectively vertex-rainbow) path. The rainbow connection number rc(G) (respectively vertex-rainbow connection number rvc(G)) of G is the smallest number of colors that are needed in order to make G rainbow connected (respectively vertex-rainbow connected). In this paper, we show that for a connected graph G and any edge e = xy ∈ E(G), rvc(G) ≤ rvc(G − e) ≤ rvc(G) + dG−e(x, y) − 1 if G − e is connected. For any two connected, non-trivial graphs G and H, rad(G□H)−1 ≤ rvc(G□H) ≤ 2rad(G□H), where G□H is the Cartesian product of G and H. For any two non-trivial graphs G and H such that G is connected, rvc(G ◦ H) = 1 if diam(G ◦ H) ≤ 2, rad(G) − 1 ≤ rvc(G ◦ H) ≤ 2rad(G) if diam(G) > 2, where G ◦ H is the lexicographic product of G and H. For the line graph L(G) of a graph G we show that rvc(L(G)) ≤ rc(G), which is the first known nontrivial inequality between the rainbow connection number and vertex-rainbow connection number. Moreover, the bounds reported are tight or tight up to additive constants.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom