z-logo
open-access-imgOpen Access
On Grundy total domination number in product graphs
Author(s) -
Boštjan Brešar,
Csilla Bujtás,
Tanja Gologranc,
Sandi Klavžar,
Gašper Košmrlj,
Tilen Marc,
Balázs Patkós,
Źsolt Tuza,
Máté Vizer
Publication year - 2018
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2184
Subject(s) - mathematics , combinatorics , domination analysis , product (mathematics) , graph , vertex (graph theory) , geometry
A longest sequence (v1, . . ., vk) of vertices of a graph G is a Grundy total dominating sequence of G if for all i, N(υj)\∪j=1i-1N(υj)≠∅ N({\upsilon _j})\backslash \bigcup\nolimits_{j = 1}^{i - 1} {N({\upsilon _j})} \ne \emptyset . The length k of the sequence is called the Grundy total domination number of G and denoted γgrt(G) \gamma _{gr}^t(G) . In this paper, the Grundy total domination number is studied on four standard graph products. For the direct product we show that γgrt(G×H)≥γgrt(G)γgrt(H) \gamma _{gr}^t(G \times H) \ge \gamma _{gr}^t(G)\gamma _{gr}^t(H) , conjecture that the equality always holds, and prove the conjecture in several special cases. For the lexicographic product we express γgrt(G∘H) \gamma _{gr}^t(G \circ H) in terms of related invariant of the factors and find some explicit formulas for it. For the strong product, lower bounds on γgrt(G⊠H) \gamma _{gr}^t(G \boxtimes H) are proved as well as upper bounds for products of paths and cycles. For the Cartesian product we prove lower and upper bounds on the Grundy total domination number when factors are paths or cycles.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom