Dominating vertex covers: the vertex-edge domination problem
Author(s) -
William F. Klostermeyer,
M. Messinger,
Anders Yeo
Publication year - 2018
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2175
Subject(s) - vertex (graph theory) , mathematics , combinatorics , neighbourhood (mathematics) , graph , mathematical analysis
The vertex-edge domination number of a graph, γve(G), is defined to be the cardinality of a smallest set D such that there exists a vertex cover C of G such that each vertex in C is dominated by a vertex in D. This is motivated by the problem of determining how many guards are needed in a graph so that a searchlight can be shone down each edge by a guard either incident to that edge or at most distance one from a vertex incident to the edge. Our main result is that for any cubic graph G with n vertices, γve(G) ≤ 9n/26. We also show that it is NP-hard to decide if γve(G) = γ(G) for bipartite graph G.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom