Super edge-connectivity and zeroth-order RandiĆ index
Author(s) -
HE Zhi-hong,
Mei Lu
Publication year - 2018
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2164
Subject(s) - mathematics , combinatorics , enhanced data rates for gsm evolution , index (typography) , topological index , order (exchange) , computer science , artificial intelligence , finance , economics , world wide web
Define the zeroth-order Randić index as R0(G)=∑x∈V(G)1dG(x), {R^0}\left( G \right) = \sum\nolimits_{x \in V\left( G \right)} {{1 \over {\sqrt {{d_G}} \left( x \right)}},} where dG(x) denotes the degree of the vertex x. In this paper, we present two sufficient conditions for graphs and triangle-free graphs, respectively, to be super edge-connected in terms of the zeroth-order Randić index.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom